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Roughness exponents: A paradox resolved
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The spatial scaling behavior of a self-affine surface is parametrized with what is commonly referred to
as a “roughness” exponent. The paradox of whether large or small values of this exponent correspond to

“rougher” surfaces is resolved here.
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A wide variety of surfaces and interfaces occurring in
nature are well represented by a kind of roughness associ-
ated with self-affine fractal scaling, defined by Mandel-
brot in terms of fractional Brownian motion [1]. Exam-
ples include the nanometer scale topology of vapor-
deposited films [2], the spatial fluctuations of liquid-gas
interfaces [3], and the kilometer scale structures of moun-
tain terrain [1]. Physical processes which produce such
surfaces are wide ranging. They include fracture [4], ero-
sion [5], and molecular-beam epitaxy [6], as well as fluid
invasion of porous media [7]. Self-affine surfaces are
characterized by fluctuations perpendicular to the surface
whose width o is defined as the height fluctuation over a
length scale L parallel to the surface,

o(L,t)={[h,(r,t)—{h(r,t) ) ?)'/?, (D

where ¢ denotes time, 4 the height, and ( ) the spatial
average over position r in a planar reference surface.
This width scales with L and ¢ as [8]

o(L,t)=L%f(tL ~*/8) . )

We focus here on the static” roughness, which is
achieved at times ¢ much larger than a saturation time
to < LB so that [9]

oxL®, (3)

The exponent a normally ranges between O and 1 and is
generally referred to as the “‘roughness exponent.” Also
denoted by H, ¥, §, and A, it has variously been referred
to in the literature as the “Hurst,” or “Holder” exponent,
the ‘“‘static roughness” parameter, and the ‘“‘stationary,”
or “spatial” scaling parameter.

In a recent publication involving numerical simulation
of nonequilibrium film growth, Yan found it surprising
that specific inclusion of surface diffusion effects in simu-
lation could result in an increase in the roughness param-
eter [10]. The implication is that surface diffusion should
smooth the surface, while an increased roughness ex-
ponent is indicative of a rougher surface. Yan has good
reason to be puzzled: numerous authors [11] explicitly
state in their respective publications that large values of
a correspond to rough surfaces. Other authors [12], fol-
lowing the mathematical definitions of Mandelbrot, assert
that large values of a correspond to surfaces with a
“smooth texture.” Clearly there is a paradox, if not a
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contradiction. These two schools of thought have
remained virtually nonoverlapping, even though they em-
ploy the identical formalism to define the roughness ex-
ponent. Our purpose here is to reconcile the two points
of view, and to clarify the paradox.

Consider Fig. 1, taken from Ref. [2]. Three surface
profiles are presented, with roughness exponents (termed
H in Ref. [2]) ranging from 0.3 to 0.7. The profile with
the largest roughness exponent has the “smoothest” tex-
ture. We note that all three profiles have the same width
on the scale of the sample size, o, =o(L ., )=1.1.
Here, as in much of solid-state physics and fractal phe-
nomena, the roughness exponent is defined within the
context of a microscopic limit, L —0, which describes
how o varies from the linear sample size L, ,, down to
atomic length scales. The limit is usually taken under the
assumption of a fixed surface width o,, on the scale of
L ... Thus the limit a=0 corresponds to a very jagged
(and therefore very rough) surface, characterized by a
nearly constant width o down to microscopic parallel
length scales L. For a>0, a smoother surface results,
since o decreases with decreasing L. Within this context,
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FIG. 1. Figure 1 of Ref. [2] (Chiarello et al.). Profiles (a), (b),
and (c) are self-affine with roughness exponents a (termed H in
that publication) ranging from 0.3 to 0.7. The self-affine profiles
all have the same rms width 0 =1.120.1.
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FIG. 2. A snapshot of liquid-vapor interfaces in a molecular-dynamics simulation of a two-dimensional Lennard-Jones fluid.
These interfaces are characterized by =0 in the presence of an external gravitational field [Fig. 2(a)], and by a=1/2 in zero gravity
[Fig. 2(b)]. (Reprinted with permission from the first and second sources in Ref. [3].)

larger values of a correspond to smoother surfaces. The
effect of surface diffusion is to increase a, or smooth a sur-
face, since local rearrangement of atoms will have a
greater impact on the shorter parallel length scales.

In contrast, in the field of statistical mechanics, a is
defined in the thermodynamic limit, L — o, and de-
scribes an asymptotic property of an interface at large
length scales. The interfacial width, for example that of
the two liquid-vapor interfaces depicted in Fig. 2, is fixed
at small length scales by the (microscopically small) bulk
correlation length £. On length scales larger than &, the
interface can be described by a single-valued height func-
tion, which in dimensions 1 <d <3 is a self-affine fractal
with a=(3—d)/2 (in pure systems). In this context, the
limit «=0 corresponds to a smooth interface, since the
width remains microscopically small even as L — o [13].
For a>0, the interface is termed ‘rough,” since the
width diverges as L — . The upper limit a=1 corre-
sponds to an interface so convoluted that it actually “fills
out” the entire bulk, d-dimensional volume [11]. Within
this context, larger values of a correspond to rougher in-
terfaces.

The paradox is thus resolved by taking note of which
limit is envisioned in the case at hand: L — o, or L —0.
The former viewpoint is more natural to capillary-wave
and other physical phenomena associated with liquid-gas
interfaces, while the latter viewpoint is more readily asso-
ciated with local atomic rearrangements which can occur
on the surfaces of solid materials.

In conclusion, an increase in the roughness exponent
may imply either an increase or decrease in the perceived
surface “roughness.” The roughness exponent quantifies
how the roughness changes with length scale, but is not a
measure of the roughness itself. It is perhaps better re-
ferred to as a relative, or comparative roughness ex-
ponent.
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